Automatic Defect Segmentation of ‘ Jonagold ’ 1 Apples on Multi - Spectral Images : A 2 Comparative Study

نویسندگان

  • D. Unay
  • B. Gosselin
چکیده

10 In this work, several thresholding and classification-based techniques were employed 11 for pixel-wise segmentation of surface defects of ‘Jonagold’ apples. Observations 12 showed that segmentation by supervised classifiers was more accurate than the 13 rest. Also, average of class-specific recognition errors was more reliable than error 14 measures based on defect size or global recognition. Segmentation accuracy im15 proved when pixels were represented as a neighborhood. Effect of down-sampling 16 on segmentation accuracy and computation times showed that multi-layer percep17 trons were the best. Russet was the most difficult defect to segment, whereas flesh 18 damage the least. The proposed method was much more precise on healthy fruit. 19

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apple Defect Detection and Quality Classification with MLP-Neural Networks

The initial analysis of a quality classification system for ‘Jonagold’ and ‘Golden Delicious’ apples is shown. Color, texture and wavelet features are extracted from the apple images. Principal components analysis was applied on the extracted features and some preliminary performance tests were done with single and multi layer perceptrons. Keywordscomputer vision; image processing; defect segme...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

On-line Fruit Grading according to their External Quality using Machine Vision

This paper presents apple grading into four classes according to European standards. Two varieties were tested: Golden Delicious and Jonagold. The image database included more than a 1000 images of fruits (528 Golden Delicious, 642 Jonagold) belonging to the three acceptable categories}Extra, I and II}and the reject (each class represents, respectively, about 60, 10 and 20% of the sample size)....

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006